
How to Review Code
An Opinionated Guide

version 0.1.0

Regan Koopmans

Introduction

After some years of working in professional software development, I have reached
the conclusion that reviewing code is at least as important as writing code. Re-
viewing code can be an avenue for improving programming skills and encourages
critical thinking about a code base outside of your own contributions. I have
written this guide to myself as a reminder to maintain habits that I think gen-
erate better code reviews. This guide is oriented toward reviewing patches of
changes in the style characterised by pull requests on GitHub and similar git
hosting services.

Question whether the change is necessary

If a code-level solution is not the optimal way to solve the problem, it makes
no sense to review the code in the first place. It is important to establish this
upfront because it might save a great deal of redundant energy in arguing the
appropriate name of a variable in a code block that should not exist.

Check the code out locally

This is a big one. It might be tempting to review code purely through the
browser. Checking out someone’s branch and potentially stashing some of your
own changes can seem like an unnecessary interruption to your own workflow.
However, this makes for better code reviews. Code should be reviewed with the
same tools it is written with. Modern IDEs are incredibly powerful tools and
will be able to spot unused variables and a number of common code smells. You
might assume that the author of the changes would catch these, but that is not
always the case.

Furthermore, code changes do not exist in isolation. Code changes exist
within the surrounding code which should be considered. This context is often
lost in browser-only reviews. Checking out the branch also makes it easier to
“play” with the code: trying to write an expression more succinctly or in a more
performant manner.

1



Saying this, it is not essential that every patch be reviewed locally. There
is a class of pull requests for which this is less useful (updates to dependency
versions, copy text changes). Use your discretion to skim these, but try to
review most code locally.

Optimise for high-level suggestions

Reviewing code is time-consuming. There are several reasons for this, predom-
inantly that most changes come with a context that needs to be internalised
by the reviewer. To review a bugfix one should know the bug, at least at the
surface level. There are suggestions that can be made in a pull-request that are
less dependent on context (styling, naming), but these should be automated as
CI build steps as far as possible. Adopting a standard code-formatter within a
project is great for this.

When reviewing code you should optimise for quality over quantity. Sug-
gestions in code-reviews exist on a spectrum of abstraction. This ranges from
“Does this code fulfil the intended purpose?” to “Should this field be final?”
Try to focus your energy on obtaining deeper, more fundamental suggestions
first. This heuristic is based on the following:

1. Higher-level suggestions are less likely to be identified by other team mem-
bers and thus less likely to be identified at all if not by you.

2. Higher-level suggestions tend to generate more changes than lower-level
suggestions and may even render the lower-level suggestions redundant.
Perhaps a certain process should be asynchronous, which would eliminate
some hacky workaround in the code being reviewed. It clearly makes more
sense to focus on the asynchronous suggestion rather than pull apart the
specifics of its inferior hacky substitute.

Common code deficiencies

Pull-requests tend to be lacking in some consistent ways, here these are discussed
such that they might be identified more readily.

Tests

If a patch modifies application behaviour, either tests should be modified, or
new tests are introduced, or both.

2


